
Korextn J. of Chem. Eng., 9(3), 135-143 (1992) 

A LONG-RANGED ELECTROSTATIC INTERACTION 
IN COMPUTER SIMULATIONS 

Soong-Hyuck Suh*, KiRyong Ha, Jong-Shik Kim, Chan-Young Park** and Nam Ho Heo*** 

Department of Chemical Engineering, Keimyung University, Taegu 704-701, Korea 

**Department of Fine Chemical Engineering, Chonnam National University, Kwangju 500-757, Korea 
***Department of Industrial Chemistry, Kyungbook National University, Taegu 702-701, Korea 

(Received 20 February 1992 ~ accepted 23 June 1992) 

Abst rac t -Molecu la r  dynamics simulations for the primitive model systems of 1-1 and 2-2 electro- 
lyre solutions were carried out to investigate the influence of system size and long-ranged potentials. 
Both the nearest image convention and the Ewald summation method were employed to handle 
the effective electrostatic interactions. For the thermodynamic and structural properties of such sys- 
tems, the resulting calculations obtained from both two methods do nol show any measurable inaccu- 
racy except for the system of 2-2 electrolytes at Mr-=6.0. However, the nearest image results indicate 
lower self-diffusion coefficients compared with those given by the Ewald method. In this case, the 
time-dependent dynamic properties are shown to be sensitive to the treatment of long-ranged Coulo- 
mbic interactions. 

INTRODUCTION 

Over last thirty years computer simulations of many 
particle systems have provided the most satisfactory. 
basis for our understanding and interpretation in the 
study of condensed phases, especially for liquid state 
[1, 2[]. As an intermediate between theory and experi- 
ment, simulations via Monte Carlo (MC) and molecu- 
lar dynamics (MD) techniques can, in principle, yield 
essentially 'exact '  experimental data for precisely de- 
fined model systems. Only the input information re- 

quired in performing machine experiments (computer 
simulations), apart from some fixed initial parameters, 
is the description of the model potentials interacting 
among atoms or molecules. 

Typically, for the purpose of computation expenses, 
such simulation studies deal with the fundamental cu- 
bic box containing only a few hundreds or a thousand 
partMes. The periodic boundary conditions are usual- 
ly imposed at the boundary walls not only to minimize 
surface effects but also to approximate an infinite sys-- 
tem. It is then unavoidable that the intermolecular 
potentials employed in computer simulations must be 
truncated at some finite separation related to the finite 
size and periodicity of a unit cell. The use of small 
numbers of particles confined within the simulation 
cell may introduce non-ergodic or quasi-ergodic behav- 

*Author to whom correspondences should be addressed. 

ior over phase space, which would not occur in the 
true thermodynamic limit. 

This is not severe problems in the MC and the MD 
computations for the systems of the short-ranged mod- 
el potentials such as hard-core and Lennard-Jones 
fluids. In this case, a continuum tail-correction may 
be required in estimating the properties of an infinite 
system from the configurations of a small number  of 
particles [3]. However, the long-ranged effective inter- 
actions cause methodological difficulties [4], for in- 
stance, in the systems of charged particles including 

molten salts, plasmas, and ionic solutions. The range 
of the intermolecular potential between a pair of char- 
ges is much larger than the periodic cell size itself. 
In fact, the electrostatic Coulombic potential changes 
very slowly as 1/r so that more distant periodic images 
can make a substantial contribution to the net energy 
of charges or the forces acting on it. 

Several methods have been employed to investigate 
the effect of the long-ranged potentials under  the vari- 
ous conditions of the periodic cell in shape (For 
more detailed discussion of this subject, we refer the 
reader to Ref. [[5] and the references are therein 
quoted). There are, in general, three different ways of 
handling the long-ranged potentials: (i) the spherical 
truncation method (the potential is simply set equal 
to zero for separation larger than a cut-off distance); 
(ii) the nearest image or minimum image convention 
(each ion interacts only with the nearest images in 
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a periodic unit cell): (iii) the Ewald summation method 
(the effective potential is evaluated by the summation 
over the infinite lattice of periodically repeated cells). 

For the systems of electrostatic Coulombic interac- 
tions, it is well-known that the spherical truncation 
method must be rejected outright since the simple 
truncation method violates the charge neutrality con- 

dition. More unlike ion-pairs tend to remain within 
the truncation sphere while less like ions in this re- 
gion. The nearest image (NI) convention, which has 
great computational advantages, automatically satisfies 
the local neutrality condition in a unit image cell. The 
main deficiency, however, rests in the structural incon- 
sistency and the noticeably strong number, or conver- 
sely, size dependency for the systems of highly 
charged and high concentrations [6, 7]. In the Ewald 
summation method [8, 9], the periodicity can be ex- 
ploited in order to calculate energies and forces for 
the infinite lattice system. This method is generally 
preferred since it gives the thermodynamic and struc- 
tural properties that are slowly varying functions of 
system size [-10]. 

In the present paper, we will address this question 
by performing molecular dynamics simulations for the 
systems of charged hard-sphere ions, so-called the 
primitive model electrolyte solutions [ i l l ,  As far as 
the time-dependent transport properties are con- 
cerned, there are quite a few MD calculations of such 
model fluids [12, 13]. For the asymmetrically charged 
1-3 electrolyte systems, one of the authors reported 
the MD results using the full Ewald approximations 
in the previous paper [13]. In this MD study of sym- 
metrically charged 1-1 and 2-2 electrolytes, we will 
investigate the influence of system size and long-rang- 
ed Coulombic interactions using both the NI conven-. 
tion and the Ewald method. The MD results will 
provide useful insight into the interplay between the 
short-ranged repulsion and the long-ranged electro-- 
static interaction in determining the equilibrium and 
dynamic properties of such model systems. 

MODEL AND COMPUTATIONS 

We consider a system of N hard-sphere ions inter- 
acting through the primitive model potential, 

I oo if r,j<d (1) 

u0(r,))= q' q~ if r,~>d 

where r# is the relative distance between ions i and 
j and e., is the uniform dielectric constant of the me- 
dium relative to the permittivity of free space, ~. For 

the simplicity of notation, all factors of 4n~ are omit- 
ted in this pair potential, and the charges, q, and % 
are both divided by (4nSo) 1/2. As used in most other 
simulation studies, the relative dielectric constant, st, 
is chosen to be 78.356 corresponding to those for wa- 
ter at the room temperature, T=298.16 K. The diame- 
ter of charged hard-sphere ions, d, are identically 
equal to be 0.425 nm with the atomic mass, m, of 100 
a . m . u .  

In a unit cubic cell of the side length, L, and the 
volume, V(= L:~), the charge density of an array of N 
ions is expressed by the standard delta function nota- 
tion, 

N 

p(r)= Z q, 6 ( r - 5 )  (2) 
i 1 

By the definition of the Fourier transformation, the 
periodic charge density over a cubic lattice can be 
expanded using the Fourier series 

p(r): p(k) exp<k.r) (3) 

and the corresponding Fourier component is 

p(k)=fv p(_r) exp( -  ik. r) dr (4) 

The reciprocal lattice vectors k_, where k = 2n/L(k., k~, 
k~) and k., k. k~=0, + 1, +2, . . - ,+m, should satisfy 
the Bragg condition of the cubic lattice constant L, 
and, for any other k, 9(k)-0.  

Substituting p(r) into Eq. (4) and then the resulting 
p(k) into Eq. (3), one finds 

N 

o(r) = Z Z q, exp{ik'(r-r,)} (5) 

The charge density can be related to the electric 
potential according to Poisson's equation, i.e., V 2 ~ (0 
=-4rTp(r). Again, by an aid of the Fourier analysis, 
o(r) can be similarly obtained from Poisson's equa- 
tion, 

I 4~ x 
O(r)= ? ~Z ~7- X. q, exp{i k . ( r -  r,)} (6) 

and, the potential energy, per a unit cubic cell is 

1 1 '~ qi2( 8(r-r,)  
= o(r)0<r) d r -  ~- ,Z, Jt. I r -  r,I dr (7) U 

The second term on the RHS of Eq. (7) comes from 
the fact that each ion contributes a self-energy arising 
from the interaction with its own periodic images. 

Inserting Eqs. (1) and (6) into Eq. (7), we get 
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4 .  u ~' exp(ik.r~j) 

= " " ~*0  

4n ~' i + 5  --fv ~8(r) dr) (8) 

If we define 

4n exp(ik" r 0) 
(~(ir)= - v -  z k~ - (9) 

k~0 

ther, Eq. (8) can be simply represented as 

U =  Z q&[co(O- lira (co(r)-l /r)]  (11)) 
t j ~ i  r ~0  

The expression in the bracket of Eq. (10) can be regard- 
ed as the effective Coulombic pair potential, which 
is anisotropic and has the symmetry in the periodic 
boundary condition. 

The sum over reciprocal lattice space for evaluating 
c0(O in Eq. (9) is, however, conditionally convergent 
and the results depend on the order in which we add 
up the terms. By the Ewald summation method [8- 
10], this conditionally convergent series can be trans- 
formed into two rapidly convergent sums: one in real 
space, U., and the other in reciprocal space, Uk. The 
essential point of the Ewald treatment is that both 
of which may be truncated with the minimal error. 
In this sense, for a short-ranged nature of U,_, potential, 
the cut-off or truncated calculation is fully valid, while 
the smoothly varying function of Uk is approximated 
by the superposition of the continuous functions. 

For real space of a short-ranged potential, 

1 x ~v erfc(ar,l.,) 
Z Z Z' q,q~ - (11) 

where n is the lattice vector and the prime on the 
summation implies the absence of n= (0, 0, 0) for i= j  
in the series. The function, erfc(x), is the complemen- 
tary error function which falls to zero rapidly with 
increasing the argument value of x. For the large value 
of ar~ arbitrary parameter ct, typically set to 5/L, the 
only term contributes to the sum in the real space 
is that n=  (0, 0, 0). This simply reduces to the normal 
minimum image convention. 

For reciprocal lattice space of periodic Fourier do- 

main. 

U~= 2~ .x x exp(-k2/4a  2) 
E Z E q i q /  k 2 cos(k'ro)(12) 

Note that k=  2n/L (L, k- k~) is a reciprocal wave vec- 
tor in units such that its components, k., k.  and k;, 

are all integers. 
The order of computations in Eq. (12) can be recon- 

structed using the charge neutrality condition. The 
double sum over ions i and j is now simplified into 
the single sum over ion i [14] 

N N 

32 Z q,o~. cos(k" r, 1) 
i l j - i  

= qi cos(k*_r, + qi sin(k.r,) (13) 

For the reciprocal part of the Ewald summation in 
the MD computations, a total of 618 wave vectors were 
evaluated using a recurrence relationship of complex 
arithmetic to avoid repeated computations. 

In the system of primitive model electrolytes, we 
combined two distinct algorithms of a 'discontinuous' 
hard-sphere repulsion with 'continuous' interactions 
into the same MD program by returning to the hybrid 
step-by-step approach described elsewhere [3, 12, 13]. 
In our MD computations the time step interval was 
selected to be of order of femtoseconds, which is small 
compared to the average time between hard-sphere 
collisions. During this time step, the equations of hard- 
sphere collisions were first solved for all possible col- 
liding pairs, and the system trajectories were then ad- 
vanced using the leapfrog version of the Verier algori- 
thm. The MD calculations here were carried out for 
the systems of various sizes containing the total num- 
ber of 64, 216, and 512 ions, respectively. In addition, 
the initial configurations were generated by randomly 
inserting particles to assist in the equilibration of the 
system. Configurations were aged, or equilibrated, for 
4,000 steps before accumulating the final ensemble 
averages and we generated 2-40,000 configurations af- 
ter equilibrium to yield the final simulation results. 

R E S U L T S  AND DISCUSSION 

System characteristics and the MD calculations for 
the thermodynamic and transport properties obtained 
from both the NI convention and the full Ewald meth- 
od are presented in Tables 1 and 2, respectively. 
In an attempt to correct for the use of finite systems, 
the results were linearly extrapolated as a function 
of l/N, and the extrapolated values to approximate 
an infinite system (N---'~) were evaluated by the uni- 
formly weighted least-square method. We also report 
the contact values of pair distribution functions for 
like, g,.(d), and unlike ion-pairs, g,,(d), in the columns 
7 and 8 of these tables. In the present study, we consid- 
er the two sets of concentration conditions, M,=0.2 
and 6.0, where Mt is the total ion concentration in 
units of moles of ions per liter, but not the stoichiomet- 
ric concentration, M, (Note that M; = 2M,= 21.6318 nd 3 
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Table !, System characteristics and the MD results using the nearest image convention 

Mt D 
(mol/l) N - U/Nk'P '~ PV/NkT ~/ PV/Nk'P ! gj(d) g,(d) (10- 4 cm2/s) 

1-1 0.2 64 0.2726(0.0425) 0.9435 0,9429 0.33 3.16 54,28 

216 0.2735(0.0218) 0.9438 0.9460 0.33 3.50 60.89 
512 0,2689(0.0137) 0.9445 0.9411 0.31 2,87 62.26, 

co 0.2704 0.9444 0.9432 0.32 3.13 63.50 
6.0 64 0.7437(0.0378) 1.6759 1.6968 0.84 2.41 3.329 

216 0.7332(0.0248) 1.6916 1.6910 0.82 2.40 3.419 
512 0.7250(0.0175) 1.7029 1.6969 0.81 2.42 3.37'9 

co 0.7247 1.7036 1.6938 0.81 2.41 3,412 
2-2 0.2 64 2.0583(0.1504) 0.6266 0.6065 0.08 30.15 30.96 

216 2.0088(0.0763) 0.6223 0.5797 0.07 25.68 29.2q 

512 2.0246(0.0405) 0.6248 0.5929 0.07 27.59 29.84 

m 2.0079 0,6230 0.5825 0.06 25.95 29.27 

6.0 64 3.7567(0.1007) "1.1867 1.1773 0.31 4.61 2.100 
216 3.7557(0.0559) 1.1386 1.0880 0.30 4.32 2.210 

512 3.7652(0.0426) 1.1332 1.1087 0.30 4.40 2.170 

co 3.7623 1.122!) 1.0809 0.29 4,30 2.208 
"~The values in parentheses indicate statistical uncertainties in the MD simulations. 

b")The reduced osmotic pressure coefficients calculated by Eqs. (14) and (16), respectively. 

Table 2. System characteristics and the MD results using the Ewald summation method 

Mt D 
N - U/NkT <' PV/Nk'D ~ PV/Nk'P J g~(d) g~,(d) 

(mol/l) (10 4 cm2/s) 

1-1 0.2 64 0.2760(0.0430) 0.94311 0.9449 0.25 3.56 61.32 

216 0.2743(0,0232) 0.9448 0.9440 0.30 3.36 61.87 
512 0.2691(0.0132) 0.94,91 0.9433 0.32 3.09 61.06 

0.2702 0.945'7 0.9432 0.32 3.11 61.42 
6.0 64 0.7202(0.0448) 1.6961 1.6497 0.76 2.30 3.215 

216 0.7250(0.0255) 1.6919 1.6980 0.81 2.42 3.165 

512 0.7243(0.0191) 1.6986 1.7019 0.82 2.43 3.504 

co 0.7257 1.6957 1.7127 0.83 2.46 3.396 
2-2 0.2 64 1.9962(0.1186) 0.6191 0.5914 0.05 26.48 28.11 

216 1.9948(0.0771) 0.6249 0.5942 0.06 26.70 29.08 
512 2.0075(0,0498) 0,6243 0.5791 0.06 25,58 29.68 

oc 2.0036 0.6259 0.5840 0.07 25.95 29.75 

6.0 64 3.6761(0.0916) 1.2048 1.1551 0.30 4.45 2,354 

216 3.6899(0,0485) 1.1926 1.1789 0.28 4.57 2.4!)4 

512 3,6886(0.0318) 1.2016 1.1510 0.27 4.48 2.480 

co 3.6924 1,I961 1.1647 0.27 4.54 2.518 

"~.C~As in Table 1. 

and nd ~ is the total number density). 

The statistical errors quoted in the column of the 

configurational energy, were estimated from the stand- 

ard deviation of the subaverage mean of each 10 step 

during the MD simulations. The ener~ '  fluctuations 
observed in both the NI and the Ewald results exhibit 

the similar behavior, where the statistical errors are: 

seen to be strong number dependent. For the large. 

systems, such systematic errors may be unimportant, 

whereas, for the small system of N=64, serious prob- 

lems may occur due to large statistical uncertainties. 

This trend is comparable to those reported in tlhe pre- 

vious simulation studies of primitive model electro- 
lytes [15-18], in which almost all computations have 
been carried oul using the MC calculations. Valleau 

and his cullaborators have extensively reported the 
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canonical E16] and the grand canonical MC results 
E15]. In their  canonical MC results, the NI method 
was adopted to evaluate the Coulombic part of poten- 
tials and the resulting energy was linearly extrapola- 
ted by the same procedure employed here. Their  cal- 
culations should be accepted with some (:are because 
the data with as few as 200 ions could yield results 
strongly depending on system size. Admittedly, in 
their MC work, more accurate extrapolations were ob- 
tained from the systems of N = 6 4  and 200, but not 
incl'ading the results for N=32.  

The NI results of - U / N k T  given in Table 1 are 
also shown to be some increase in the configurational 
energy compared with those for the Ewald results in 
Table 2, particularly for the system of highly charged 

2-2 electrolytes and high concentration of Mr=6.0. A 
similar drift of the internal energy towards unreason- 
ably low values was observed for the LiC1 systems 
E 191] using the Evjen method [-20]. The NI convention 
is equivalent to the Evjen approximation in calculating 
the lattice energy. Woodcock and Singer E21] later 
fourLd that this drift did not occur when they evaluated 
the energy, by the Ewald method instead of the Evjen 
approximation. The Ewald energy is correct for a per- 
fect lattice so it may also be successful for dense sys- 
tems where ions depart little from a close-packed con- 
figuration. As far as the static equilibrium properties 
are concerned, both the NI and the Ewald methods 
give reasonable results under  the conditions investi- 
gated here. In this sense, at least for i-1 electrolytes, 
these two methods to treat long-ranged Coulombic in- 
teractions seem to be satisfactory. 

For the primitive model fluids containing a hard- 
sphere element with continuous Coulombic interac- 
tion,s, the osmotic pressure can be determined by eva- 

luating the contact value of pair distribution functions, 

PV U ~nd ~ 
- - -  = 1 + - -  ~- I - E g ~ ( d )  + g~(d)~] (1,1) 
NkT 3NkT 3 

where kT is Boltzmann's constant times the absolute 
temperature. In this equation, we have used the sym- 
metric properties of pair distribution functions for 1- 
1 ar.d 2-2 electrot~es, 

gM) = g- �9 ( r )=g  (r) (15a) 

g~(r)=g. (r) g +(r) (15t)) 

Alternatively, the MD calculations can provide a sim- 
ple and accurate means in computing the pressure 
of hard-core systems. The third term on the RHS of 

Eq. (14), which is directly related to the hard-sphere 
cont:cibutions to the pressure, is then replaced by the 

time average, i.e., a sum over all collisions occurring 
in the total simulation time, ~. As a result, the virial 
expression for the osmotic pressure in the MD meth- 
od can be rewritten as 

PV U m Z (r0. Av,~) ...... t(16) 
NkY = 1 + 3NkT + 3NkT~-~ I~u c , , , ~  ~ - 

The contact values of the pair distribution functions, 
however, cannot be calculated directly during the sim- 
ulation. In the MC calculations, these contact values 
can be only determined by extrapolating backwards 
to r =  d from values close to contact. The extrapolation 
procedure may introduce large uncertainties when the 
corresponding pair functions can rise or fall rapidly 

near contact. This gives rise to poor statistical accu- 
racy for the MC pressure in such systems. For this 
reason, the MC pressure results are known to be less 
accurate than those obtained from the MD method 
E3~. Moreover, in a convergence problem, the Metro- 
polis sampling of the standard MC simulations is also 
inefficient for the system of low concentrations due 
to the energy traps over phase space [22-]. When one 
configuration favored energetically is accepted be- 
tween unlike ions, many trial configurations may be 
required to escape the energy pocket in the Markov 
chain of such MC calculations. 

The reduced osmotic pressure coefficients obtained 
from Eqs. (14) and (16) are presented in Tables 1 and 
2. As shown in these tables, the NI and the Ewald 
results for the pressure calculated by Eq. (14) indicate 
reasonable agreement with the MD pressure in Eq. 
(16) except for the system of 2-2 electrolytes. As men- 
tioned earlier, the failure in this case is undoubtedly 
due to a lack of success in extrapolating to the contact 
point. For the 1-1 and 2-2 electrolyte systems employ- 

ed in this work, the Ewald results of the configura- 
tional energy and the osmotic pressure in Table 2 
are shown to be in excellent agreement with one of 
the best theoretical approaches, namely, the hypernet- 
ted chain theory E2,231. This again confirmed the 
good quality of the Ewald method. 

In Fig. 1, we have plotted the pair distribution func- 
tions, g~(r) and g,(r), respectively, of the systems of 
N=64,  216, and 500 for 2-2 electrolytes at M, 6.0 
(Fig. la corresponds to the results obtained from the 
NI convention and Fig. lb  from the Ewald method). 
As has been observed from the earlier MC studies 
of 2-2 primitive electrolytes E16-18~, the salient fea- 
tures displayed in these figures are a strong tendency 
to the formation of linear ion triplets and probably 
even larger clusters. The presence of ( + - - + )  or 
( -  + - )  ion triplets is illustrated in a local maximum 
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g.(r) 

~(r) 

0 1 , 1 1 , 1 1 ~ t L I  
1 2 3 

r/d 

b) 

g~(r) 

~(r) 

0 1 , h J b [ l l l l r l l l l  
1 2 3 4 

r/d 

Fig. 1. The like and unlike pair distribution functions for 
2~2 primitive model electrolytes at M,=6.0. 
(a) the NI method, (b) the Ewald method 
The dotted, the medium dash, and the solid lines 
are corresponding to the systems of N=64, 216, 
and 512, respectively. 

in g~(r) near r~2d. The MD pair distribution functions 
of N =  64 (the dotted lines) exhibit a high degree of 
statistical noise which decays significantly with increas- 
ing sample size. In this figure, both the NI and the 
Ewald pair functions for the large system of N=512 
(the solid lines) are seen to behave smoothly. The 
Ewald pair functions (Fig. lb) also indicate only a 
weak number dependency compared with the pair func- 
tions given by the NI method (Fig. la). 

The most interesting feature in this figure is the 
peculiar local peak displayed in the NI pair functions 
of N=64.  As we increase system size, such humps 
are gradually disappeared for the systems of N=216 
and 512. This structural effect in pair distribution func- 
tions can be explained in terms of the shape of the 
periodic cell. The lowest interaction energy hetween 
unlike ion-pairs is found when each ion is located in 
a diagonal corne.r of the nearest image cube. For the 
small system, as shown in Fig. ta, this leads to the 
certain special positions in favor of the cube corners 
rather than the perfect radial symmetry. In the MC 
computations of molten salts [24], Adams employed 
the two different shapes of periodic boundary condi- 
tions: the usual cubic cell with N=512 ions and the 
truncated octahedral cell with N=864 ions. T]he ther- 
modynamic and structural properties obtained from 
the Ewald summation were found to be the same with- 
in statistical errors for both the two sets of boundary 
conditions. In contrast, the NI calculations were totally 
different from those by the Ewald summation. The 
empirical conclusion drawn in his MC work, together 
with previously published evidence [6, 7, 25], is that 
the Ewald method is an excellent method for the high- 
ly charged wstems. 

The self-diffusion coefficients can be calculated from 
the slope of the mean-square displacement (MSD) ver- 
sus time using the Einstein equations 

% 
1 1 < ir,(t)_ r,(0)12> (17) D =  lim ~ ~ s 

and from the integration of the velocity autocorrelation 
function (VACF) using the Green-Kubo relations 

1 f ~ l  D = ~ -  0 N E<_v,(t)'v~(0)>dt (18) 

in which the symbol < > represents the ensemble 
average over equilibrium configurations. 

Typically, for the systems of short-ranged potentials, 
the MD computations of the time-dependent transport 
properties are only marginally influenced by finite sys- 
tem size when the simulations are executed for a 
fundamental cell containing approximately a few hun- 
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Fig .  2. M e a n - s q u a r e  d i s p l a c e m e n t  c u r v e s  v e r s u s  t i m e  for  

2 - 2  p r i m i t i v e  m o d e l  e l e c t r o l y t e s  at  M , = 6 . 0 .  

(a) the NI method, (b) the Ewald method 

The lines are as in Fig. 1 

dreds particles. The accuracy will of course be much 
grea,:er with increasing system size. In the case of 

bulk hard-sphere fluids, it was found that increasing 
t h e  number of particles in the system to 4!32 particles 

had little or no effect [261. However. for the systems 

of primitive model electrolytes, only a limited infor- 

mation is available [12, 133. 
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Fig .  3 .  N o r m a l i z e d  v e l o c i t y  a u t o c o r r e l a t i o n  f u n c t i o n s  ver-  

s u s  t i m e  for  1-1 a n d  2 - 2  pr imi t ive  m o d e l  e l e c t r o -  

l y t e s  at  M,=6.0. 
(a) the NI method, (b) the Ewald method 

The lines are as in Fig. 1 

Returning to Table 1 and 2, we report here lhe 

self-diffusion coefficients of 1-1 and 2-2 electrolyte so- 

lutions in the last column of these tables. The results 

obtained from the MSD in Eq. (17) and the VACF in 
Eq. (18) should agree with each other within the statis- 

tical errors. In these tables, the self-diffusion coeffi- 

cients obtained from the MSD curves were only re- 
ported since the two methods gave the results in good 
agreement, typically less than 5% difference. Even 

though our MD calculations for the static equilibrium 

properties do not show any measurable inaccuracy, 
t h e  results for the time-dependent transport coeffi- 

cients were seen to be unexpectedly sensitive to the 
t r e a t m e n t  o f  t h e  long-ranged electrostatic interactions 

rather than system size. 
In an elfort to assess the effect of long-ranged inter- 

actions on the time-dependent properties, the MSD 

K o r e a n  J .  C h .  E . ( V o i .  9 ,  N o .  3 )  
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curves versus time for 2-2 electrolytes at Mt = 6.0 are 
displayed in Figs. 2a (the NI convention) and 2b (the 
Ewald method), respectively. In this case, there are 
substantial differences in the resulting self-diffusion 
coefficient between the NI and the Ewald methods. 
In Figs. 3a and 3b, we have also plotted the normalized 
VACFs for a few selected runs to illustrate the manner 
in which the VACF changes with increasing system 
charge and system size. It is worth noting that the 
VACFs for 2-2 electrolytes exhibit non-exponential 
behavior. Although not apparent in this figure, the 
VACFs for 2-2 electrolytes given by the Ewald method 
display stronger correlations in velocity than those by 
the NI method. Consequently, the Ewald approxima- 
tion results in larger diffusion coefficients. The long- 
ranged Coulombic potential increasingly influences the 
collective motion of ionic fluids. In addition, the elec- 
trostatic interaction enhances correlations between un- 
like ion-pairs while decorrelation between like pairs. 

CONCLUSION 

In the present study, we investigated the influence 
of system size and long-ranged electrostatic intera(> 
tions for the primitive model systems of i-1 and 2- 
2 electrolyte solutions. In order to determine the num- 
ber of ions required to ensure negligible size effects 
on the final results, the MD computations using the 
NI convention and the full Ewald method were carried 
our for the systems of various sizes containing the 
total number of 64, 216, and 512 ions, respectively. 

Under the concentration conditions employed in this 
work, the configurational energy coefficiems from both 
the NI and the Ewald methods are shown to be in 
good agreement with each other when the runs were 
excuted for a fundamental cubic cell containing appro- 
ximately 200 particles or more. For the NI pressm:e 
results, however, number dependencies, or conversely 
size dependencies, turned out to be large and erratic, 
particularly for the system of 2-2 electrolytes at Mr:= 
6.0. In this case the transport diffusion results of the 
NI convention are much lower than those given by 
the Ewald method. The time-dependent dynamic prop- 
erties also indicate the significant influence of long- 
ranged Coulombic potentials as displayed !n the mean- 
square displacement curves and the velocity autocor- 
relation functions. In addition, better accuracies for 
the pressure were achieved from the MD-type time 
average in Eq. (16) rather than from the MC-type con- 
figurational average in Eq. (14) using the extrapolated 
contact values of pair distribution functions. The MD 
results reported here have a direct bearing on trans- 

port phenomena in variety of ionic systems. It would 
be of great interest to extend to more realistic fluids 
in order to verify a number of the conclusion,; obser- 
ved in our MD simulations. 
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