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Abstract—Molecular dynamics simulations for the primitive model systems of 1-1 and 2-2 electro-
lyte solutions were carried out to investigate the influence of system size and long-ranged potentials.
Both the nearest image convention and the Ewald summation method were employed to handle
the effective electrostatic interactions. For the thermodynamic and structural properties of such sys-
tems, the resulting calculations obtained from both rwo methods do not show any measurable inaccu-
racy except for the svstem of 2-2 electrolytes at M;=6.0. However, the nearest image results indicate
lower self-diffusion coefficients compared with those given by the Ewald method. In this case, the
time-dependent dynamic properties are shown to be sensitive to the treatment of long-ranged Coulo-

mbic interactions.

INTRODUCTION

Over last thirty years computer simulations of many
particle systems have provided the most satisfactory
basis for our understanding and interpretation in the
study of condensed phases, especially for liquid state
[1,2]. As an intermediate between theory and experi-
ment, simulations via Monte Carlo (MC) and molecu-
lar dynamics (MD) techniques can, in principle, yield
essentially ‘exact’ experimental data for precisely de-
fined model systems. Only the input information re-
quired in performing machine experiments (computer
simulations), apart from some fixed initial parameters,
is the description of the model potentials interacting
among atoms or molecules.

Typically, for the purpose of computation expenses,
such simulation studies deal with the fundamental cu-
bic box containing only a few hundreds or a thousand
particles. The periodic boundary conditions are usual-
ly imposed at the boundary walls not only to minimize
surface effects but also to approximate an infinite sys-
tem. It is then unavoidable that the intermolecular
potentials employed in computer simulations must be
truncated at some finite separation related to the finite
size and periodicity of a unit cell. The use of small
numbers of particles confined within the simulation
cell may introduce non-ergodic or quasi-ergodic behav-
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ior over phase space, which would not occur in the
true thermodynamic limit.

This is not severe problems in the MC and the MD
computations for the systems of the short-ranged mod-
el potentials such as hard-core and Lennard-Jones
fluids. In this case, a continuum tail-correction may
be required in estimating the properties of an infinite
system from the configurations of a small number of
particles [ 3]. However, the long-ranged effective inter-
actions cause methodological difficulties [4], for in-
stance, in the systems of charged particles including
molten salts, plasmas, and ionic solutions. The range
of the intermolecular potential between a pair of char-
ges is much larger than the periodic cell size itself.
In fact, the electrostatic Coulombic potential changes
very slowly as 1/r so that more distant periodic images
can make a substantial contribution to the net energy
of charges or the forces acting on it.

Several methods have been employed to investigate
the effect of the long-ranged potentials under the vari-
ous conditions of the periodic cell in shape (For
more detailed discussion of this subject, we refer the
reader to Ref. [5] and the references are therein
quoted). There are, in general, three different ways of
handling the long-ranged potentials: (i) the spherical
truncation method (the potential is simply set equal
to zero for separation larger than a cut-off distance);
(ii) the nearest image or minimum image convention
(each ion interacts only with the nearest images In
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a periodic unit cell); (jii) the Ewald summation method
(the effective potential is evaluated by the summation
over the infinite lattice of periodically repeated cells).

For the systems of electrostatic Coulombic interac-
tions, it is well-known that the spherical truncation
method must be rejected outright since the simple
truncation method violates the charge neutrality con-
dition. More unlike ion-pairs tend to remain within
the truncation sphere while less like ions in this re-
gion. The nearest image (NI) convention, which has
great computational advantages, automatically satisfies
the local neutrality condition in a unit image cell. The
main deficiency, however, rests in the structural incon-
sistency and the noticeably strong number, or conver-
sely, size dependency for the systems of highly
charged and high concentrations [6, 7]. In the Ewald
summation method [8, 9], the periodicity can be ex-
ploited in order to calculate energies and forces for
the infinite lattice system. This method is generally
preferred since it gives the thermodynamic and struc-
tural properties that are slowly varying functions of
system size [10].

In the present paper, we will address this question
by performing molecular dynamics simulations for the
systems of charged hard-sphere ions, so-called the
primitive model electrolyte solutions [11]. As far as
the time-dependent transport properties are con-
cerned, there are quite a few MD calculaticns of such
model fluids [12, 13]. For the asymmetrically charged
1-3 electrolyte systems, one of the authors reported
the MD results using the full Ewald approximations
in the previous paper [13]. In this MD study of sym-
metrically charged 1-1 and 2-2 electrolytes, we will
investigate the influence of system size and long-rang-
ed Coulombic interactions using both the NI conven-
tion and the Ewald method. The MD results will
provide useful insight into the interplay between the
short-ranged repulsion and the long-ranged electro-
static interaction in determining the equilibrium and
dynamic properties of such model systems.

MODEL AND COMPUTATIONS

We consider a system of N hard-sphere ions inter-
acting through the primitive model potential,

w if r;<d
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where r; is the relative distance between itons i and
j and ¢, is the umform dielectric constant of the me-
dium relative to the permittivity of free space, &,. For
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the simplicity of notation, all factors of 4ne, are omit-
ted in this pair potential, and the charges, ¢; and g
are both divided by (4ne,)'?. As used in most other
simulation studies, the relative dielectric constant, &,
is chosen to be 78.356 corresponding to those for wa-
ter at the room temperature, T=298.16 K. The diame-
ter of charged hard-sphere ions, d, are identically
equal to be 0425 nm with the atomic mass, m, of 100
am.u.

In a unit cubic cell of the side length, L, and the
volume, V(=L?), the charge density of an array of N
ions is expressed by the standard delta function nota-
tion,

N
plO=Z g 8(r—1) 2)

By the definition of the Fourier transformation, the
periodic charge density over a cubic lattice can be
expanded using the Fourier series

p0= ¢ Z plk) explik D) ®
£

and the corresponding Fourier component is
plk)= f , PO exp(—ik-r) dr 4)

The reciprocal lattice vectors k, where k=2n/L(k,, k,,
k) and k,, k., k=0, £1, £2,--,= o, should satisfy
the Bragg condition of the cubic lattice constant L,
and, for any other k, p(k)=0.

Substituting p(r) into Eq. (4) and then the resulting
p(k) into Eq.(3), one finds

p0=1 T T 4 explikc—p)) G)

The charge density can be related to the electric
potential according to Poisson’s equation, i.e., V2 ¢ (r)
= —4np(r). Again, by an aid of the Fourier analysis,
o(r) can be similarly obtained from Poisson’s equa-
tion,

o(r)= 1 z A

h
+ Z q explik-(c— )} (6)
k=0 k i1

and, the potential energy per a unit cubic cell is

vwif _l ad 2 a(r—g)

U=y ), pwo0 de— 5 T a2 S=Hdr @)

The second term on the RHS of Eq.(7) comes from

the fact that each ion contributes a self-energy arising

from the interaction with its own periodic images.
Inserting Egs. (1) and (6) into Eq.(7), we get
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If we define

o 4n exp(ik- )
(p(!)‘ V k%[) k2 (9)

ther, Eq. (8) can be simply represented as
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The expression in the bracket of Eq. (10) can be regard-
ed as the effective Coulombic pair potential, which
is anisotropic and has the symmetry in the periodic
boundary condition.

The sum over reciprocal lattice space for evaluating
o(r) in Eq.(9) is, however, conditionally convergent
and the results depend on the order in which we add
up the terms. By the Ewald summation method [8-
10], this conditionally convergent series can be trans-
formed into two rapidly convergent sums: one in real
space, Uy, and the other in reciprocal space, U, The
essential point of the Ewald treatment is that both
of which may be truncated with the minimal error.
In this sense, for a short-ranged nature of U, potential,
the cut-off or truncated calculation is fully valid, while
the smoothly varying function of U, is approximated
by the superposition of the continuous functions.

For real space of a short-ranged potential,

N

U,== Z
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where n is the lattice vector and the prime on the
summation implies the absence of n=(0, 0, 0) for i=]j
in the series. The function, erfc(x), is the complemen-
tary error function which falls to zero rapidly with
increasing the argument value of x. For the large value
of ar. arbitrary parameter a, typically set to 5/L, the
only term contributes to the sum in the real space
is that n= (0, 0, 0). This simply reduces to the normal
minimum image convention.
For reciprocal lattice space of periodic Fourier do-
main,
N N — 1.2 2
Ulg:% 5y 3 qiqj_ezp( k*/4a?)

2
iwl i keD k

cos(k-r;)(12)

Note that k=2n/L (k. k, k.) is a reciprocal wave vec-
tor in units such that its components, k., k,, and k.,
are zll integers.

The order of computations in Eq. (12) can be recon-

structed using the charge neutrality condition. The
double sum over ions i and j is now simplified into
the single sum over ion i [14]
N N
X X qqcostk-ry)
i=1 j=i
2

[ 2 sesten]+] Zasinten] v

For the reciprocal part of the Ewald summation in
the MD computations, a total of 618 wave vectors were
evaluated using a recurrence relationship of complex
arithmetic to avoid repeated computations.

In the system of primitive model electrolytes, we
combined two distinct algorithms of a ‘discontinuous’
hard-sphere repulsion with ‘continuous’ interactions
into the same MD program by returning to the hybrid
step-by-step approach described elsewhere 3,12, 13].
In our MD computations the time step interval was
selected to be of order of femtoseconds, which is small
compared to the average time between hard-sphere
collisions. During this time step, the equations of hard-
sphere collisions were first solved for all possible col-
liding pairs, and the system trajectories were then ad-
vanced using the leapfrog version of the Verlet algori-
thm. The MD calculations here were carried out for
the systems of various sizes containing the total num-
ber of 64, 216, and 512 ions, respectively. In addition,
the initial configurations were generated by randomly
inserting particles to assist in the equilibration of the
system. Configurations were aged, or equilibrated, for
4,000 steps before accumulating the final ensemble
averages and we generated 2-40,000 configurations af-
ter equilibrium to yield the final simulation results.

RESULTS AND DISCUSSION

System characteristics and the MD calculations for
the thermodynamic and transport properties obtained
from both the NI convention and the full Ewald meth-
od are presented in Tables 1 and 2, respectively.
In an attempt to correct for the use of finite systems,
the results were linearly extrapolated as a function
of 1/N, and the extrapolated values to approximate
an infinite system (N—w) were evaluated by the uni-
formly weighted least-square method. We also report
the contact values of pair distribution functions for
like, g(d), and unlike ion-pairs, g.(d), in the columns
7 and 8 of these tables. In the present study, we consid-
er the two sets of concentration conditions, M,=0.2
and 6.0, where M, is the total ion concentration in
units of moles of ions per liter, but not the stoichiomet-
ric concentration, M, (Note that M,=2M,=21.6318 nd®

Korean J. Ch. E.(Vol. 9, No. 3)



138 S-H. Suh et al.

Table 1. System characteristics and the MD results using the nearest image convention

M, . .
(mol) N —U/NKT? PV/NKT?
1-1 0.2 64  0.2726(0.0425) 0.9435
216 0.2735(0.0218) 0.9438
512 0.2689(0.0137) 0.9445
© 0.2704 0.9444
6.0 64  0.7437(0.0378) 1.6759
216 0.7332(0.0248) 16916
512 0.7250(0.0175) 1.7029
© 0.7247 1.7036
2-2 02 64  2.0583(0.1504) 0.6266
216  2.0088(0.0763) 0.6223
512 2.0246(0.0405) 0.6248
o 2.0079 0.6230
6.0 64  3.7567(0.1007) '1.1867
216  3.7557(0.0559) 1.1386
512 3.7652(0.0426) 1.1332
o 3.7623 1.1229

D
PV/NKT? g(d) g(d) (10~* cm¥/s)
0.9429 033 3.16 54.28
0.9460 0.33 3.50 60.89
0.9411 0.31 2.87 62.26
0.9432 0.32 313 63.50
1.6968 0.84 241 3.329
1.6910 0.82 240 3.419
1.6969 0.81 242 3.379
1.6938 0.81 241 3412
0.6065 0.08 30.15 30.96
0.5797 0.07 25.68 29.29
0.5929 0.07 27.59 29.84
0.5825 0.06 25.95 29.27
11773 0.31 4.61 2.100
1.0880 0.30 432 2.210
1.1087 0.30 4.40 2.170
1.0809 0.29 4.30 2.208

“The values in parentheses indicate statistical uncertainties in the MD simulations.
t9The reduced osmotic pressure coefficients calculated by Egs. (14) and (16), respectively.

Table 2. System characteristics and the MD results using the Ewald summation method

M, .. ] D
wmoly N — U/NKT? PV/NKT? PV/NKT? g(d) 8D 0y
1-1 02 64 0.2760(0.0430) 09431 0.9449 025 356 61.32
216 0.2743(0.0232) 0.9448 0.9440 0.30 336 6187
512 0.2691(0.0132) 0.9454 0.9433 0.32 3.09 61.06
w 02702 0.9457 0.9432 0.32 311 6142
6.0 64 0.7202(0.0448) 1.6961 1.6497 0.76 2.30 3215
216  0.7250(0.0255) 1.6919 1.6980 0.81 242 3.165
512 0.7243(0.0191) 1.6985 1.7019 0.82 243 3504
w 7257 1.6957 1.7127 083 2.46 3.396
2-2 0.2 64 1.9962(0.1186) 06191 0.5914 0.05 2648 28.11
216 1.9948(0.0771) 0.6249 05942 0.06 26.70 29.08
512 2.0075(0.0498) 0.6243 0.5791 0.06 25.58 29,68
w 20036 0.6259 0.5840 007 25.95 29.75
6.0 64  3.6761(0.0916) 1.2048 1.1551 0.30 445 2.354
216 3.6899(0.0485) 1.1926 1.1789 0.28 457 2494
512 3.6886(0.0318) 1.2016 1.1510 0.27 448 2.430
w 36924 1.1961 1.1647 027 454 2518

+r9Ag in Table 1.

and nd* is the total number density).

The statistical errors quoted in the column of the
configurational energy were estimated from the stand-
ard deviation of the subaverage mean of each 10 step
during the MD simulations. The energy fluctuations
observed in both the NI and the Ewald results exhibit
the similar behavior, where the statistical errors are
seen to be strong number dependent. For the large
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systems, such systematic errors may be unimportant,
whereas, for the small system of N=64, serious prob-
lems may occur due to large statistical uncertainties.
This trend is comparable to those reported in the pre-
vious simulation studies of primitive model electro-
lytes [15-18], in which almost all computations have
been carried out using the MC calculations. Valleau
and his collaborators have extensively reported the
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canonical [16] and the grand canonical MC results
(15]. In their canonical MC results, the NI method
was adopted to evaluate the Coulombic part of poten-
tials and the resulting energy was linearly extrapola-
ted by the same procedure employed here. Their cal-
culations should be accepted with some care because
the data with as few as 200 ions could yield results
strongly depending on system size. Admittedly, in
their MC work, more accurate extrapolations were ob-
tained from the systems of N=64 and 200, but not
including the results for N=32.

The NI results of —U/NKT given in Table 1 are
also shown to be some increase in the configurational
energy compared with those for the Ewald results in
Table 2, particularly for the system of highly charged
2-2 electrolytes and high concentration of M,;=6.0. A
similar drift of the internal energy towarcs unreason-
ably low values was observed for the LiCl systems
[19] using the Evjen method [20]. The NI convention
is equivalent to the Evjen approximation in calculating
the lattice energy. Woodcock and Singer [21] later
fourd that this drift did not occur when they evaluated
the energy by the Ewald method instead of the Evjen
approximation. The Ewald energy is correct for a per-
fect lattice so it may also be successful for dense sys-
tems where ions depart little from a close-packed con-
figuration. As far as the static equilibrium properties
are concerned, both the NI and the Ewald methods
give reasonable results under the conditions investi-
gated here. In this sense, at least for 1-1 electrolytes,
these two methods to treat long-ranged Coulombic in-
teractions seem to be satisfactory.

For the primitive model fluids containing a hard-
sphere element with continuous Coulombic interac-
tions, the osmotic pressure can be determined by eva-
luating the contact value of pair distribution functions,

PV U

NET =1+ 3NKT TTI;d“‘ Lg(d)+ g (d)] 14)

where kT is Boltzmann’s constant times the absolute
temperature. In this equation, we have used the sym-
metric properties of pair distribution functions for 1-
1 ard 2-2 electrolytes,

gr=g. . (=g () (15a)
gM=g. =g+ (15b)

Alternatively, the MD calculations can provide a sim-
ple and accurate means in computing the pressure
of hard-core systems. The third term on the RHS of
Eq. (14), which is directly related to the hard-sphere
contributions to the pressure, is then replaced by the

time average, i.e., a sum over all collisions occurring
in the total simulation time, t. As a result, the virial
expression for the osmotic pressure in the MD meth-
od can be rewritten as

PV U m

NeT 11 3NKT

3NKT < WE:)M (5 Ag)eomiaer (16)

The contact values of the pair distribution functions,
however, cannot be calculated directly during the sim-
ulation. In the MC calculations, these contact values
can be only determined by extrapolating backwards
to r=d from values close to contact. The extrapolation
procedure may introduce large uncertainties when the
corresponding pair functions can rise or fall rapidly
near contact. This gives rise to poor statistical accu-
racy for the MC pressure in such systems. For this
reason, the MC pressure results are known to be less
accurate than these obtained from the MD method
[3]. Moreover, in a convergence problem, the Metro-
polis sampling of the standard MC simulations is also
nefficient for the system of low concentrations due
to the energy traps over phase space [22]. When one
configuration favored energetically is accepted be-
tween unlike ions, many trial configurations may be
required to escape the energy pocket in the Markov
chain of such MC calculations.

The reduced osmotic pressure coefficients obtained
from Eqs. (14) and (16) are presented in Tables 1 and
2. As shown in these tables, the NI and the Ewald
results for the pressure calculated by Eq. (14) indicate
reasonable agreement with the MD pressure in Eq.
(16) except for the system of 2-2 electrolytes. As men-
tioned earlier, the failure in this case is undoubtedly
due to a lack of success in extrapolating to the contact
point. For the 1-1 and 2-2 electrolyte systems employ-
ed in this work, the Ewald results of the configura-
tional energy and the osmotic pressure in Table 2
are shown to be in excellent agreement with one of
the best theoretical approaches, namely, the hypernet-
ted chain theory [2,23]. This again confirmed the
good quality of the Ewald method.

In Fig. 1, we have plotted the pair distribution func-
tions, g(r) and g(r), respectively, of the systems of
N=64, 216, and 500 for 2-2 electrolytes at M,=6.0
(Fig. la corresponds to the results obtained from the
NI convention and Fig. 1b from the Ewald method).
As has been observed from the earlier MC studies
of 2-2 primitive electrolytes [16-18], the salient fea-
tures displayed in these figures are a strong tendency
to the formation of linear ion triplets and probably
even larger clusters. The presence of (+—+) or
(= + ~) ion triplets is illustrated in a local maximum

Korean J. Ch. E.(Vol. 9, No. 3)
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Fig. 1. The like and unlike pair distribution functions for
2-2 primitive model electrolytes at M,=6.0.
(a) the NI method, (b) the Ewald method
The dotted, the medium dash, and the solid lines
are corresponding to the systems of N=64, 216,
and 512, respectively.
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in g(r) near r=2d. The MD pair distribution functions
of N=64 (the dotted lines) exhibit a high degree of
statistical noise which decays significantly with increas-
ing sample size. In this figure, both the NI and the
Ewald pair functions for the large system of N=512
(the solid lines) are seen to behave smoothly. The
Ewald pair functions (Fig. 1b) also indicate only a
weak number dependency compared with the pair func-
tions given by the NI method (Fig. 1la).

The most interesting feature in this figure is the
peculiar local peak displayed in the NI pair functions
of N=64. As we increase system size, such humps
are gradually disappeared for the systems of N=216
and 512. This structural effect in pair distribution func-
tions can be explained in terms of the shape of the
periodic cell. The lowest interaction energy between
unlike ion-pairs is found when each ion is located in
a diagona! corner of the nearest image cube. For the
small system, as shown in Fig. la, this leads to the
certain special positions in favor of the cube corners
rather than the perfect radial symmetry. In the MC
computations of molten salts [24], Adams employed
the two different shapes of periodic boundary condi-
tions: the usual cubic cell with N=512 ions and the
truncated octahedral cell with N=3864 ions. The ther-
modynamic and structural properties obtained from
the Ewald summation were found to be the sarme with-
in statistical errors for both the two sets of boundary
conditions. In contrast, the NI calculations were totally
different from those by the Ewald summation. The
empirical conclusion drawn in his MC work, together
with previously published evidence [6,7,25], is that
the Ewald method is an excellent method for the high-
ly charged systems.

The self-diffusion coefficients can be calculated from
the slope of the mean-square displacement (MSD) ver-
sus time using the Einstein equations

D= l — = T <in®)-r0)*> 17
' 6N,El r(t) — 0} 17
and from the integration of the velocity autocorrelation
function (VACF) using the Green-Kubo relations

N
=3 j = E<v(t) vi(0)>dt 18)

in which the symbol { ) represents the ensemble
average over equilibrium configurations.

Typically, for the systems of short-ranged potentials,
the MD computations of the time-dependent transport
properties are only marginally influenced by finite sys-
tem size when the simulations are executed for a
fundamental cell containing approximately a few hun-
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Fig. 2. Mean-square displacement curves versus time for
2-2 primitive model electrolytes at M,=6.0.
(a) the NI method, (b) the Ewald method
The lines are as in Fig. 1

dreds particles. The accuracy will of course be much
greater with increasing system size. In the case of
bulk hard-sphere fluids, it was found thal increasing
the number of particles in the system to 432 particles
had little or no effect [26]. However, for the systems
of primitive model electrolytes, only a limited infor-
mation is available [12,13].

0.8 1
0.6 .‘.\\

0.4 \

Normalized VACF

0 2 4 6 8 10
time [ ps)]

Fig. 3. Normalized velocity autocorrelation functions ver-
sus time for 1-1 and 2-2 primitive model electro-
lytes at M;=6.0.

(a) the NI method, (b) the Ewald methcd
The lines are as in Fig. 1

Returning to Table 1 and 2, we rcport here the
self-diffusion coefficients of 1-1 and 2-2 electrolyte so-
lutions in the last column of these tables. The results
obtained from the MSD in Eq. (17) and the VACF in
Eq. (18) should agree with each other within the statis-
tical errors. In these tables, the self-diffusion coeffi-
cients obtained from the MSD curves were only re-
ported since the two methods gave the results in good
agreement, typically less than 5% difference. Even
though our MD calculations for the static equilibrium
properties do not show any measurable inaccuracy,
the results for the time-dependent transport coeffi-
cients were seen to be unexpectedly sensitive to the
treatment of the long-ranged electrostatic interactions
rather than system size.

In an effort to assess the effect of long-ranged inter-
actions on the time-dependent properties, the MSD

Korean J. Ch. E.(Vol. 9, No. 3)
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curves versus time for 2-2 electrolytes at M,=6.0 are
displayed in Figs. 2a (the NI convention) and 2b (the
Ewald method), respectively. In this case, there are
substantial differences in the resulting self-diffusion
coefficient between the NI and the Ewald methods.
In Figs. 3a and 3b, we have also plotted the normalized
VACFs for a few selected runs to illustrate the manner
in which the VACF changes with increasing system
charge and system size. It is worth noting that the
VACFs for 2-2 electrolytes exhibit non-exponential
behavior. Although not apparent in this figure, the
VACFs for 2-2 electrolytes given by the Ewald method
display stronger correlations in velocity than those by
the NI method. Consequently, the Ewald approxima-
tion results in larger diffusion coefficients. The long-
ranged Coulombic potential increasingly influences the
collective motion of ionic fluids. In addition, the elec-
trostatic interaction enhances correlations between un-
like ion-pairs while decorrelation between like pairs.

CONCLUSION

In the present study, we investigated the influence
of system size and long-ranged electrostatic interac-
tions for the primitive model systems of 1-1 and 2-
2 electrolyte solutions. In order to determine the num-
ber of ions required to ensure negligible size effects
on the final results, the MD computations using the
NI convention and the full Ewald method were carried
our for the systems of various sizes containing the
total number of 64, 216, and 512 ions, respectively.

Under the concentration conditions employed in this
work, the configurational energy coefficients from both
the NI and the Ewald methods are shown to be in
good agreement with each other when the runs were
excuted for a fundamental cubic cell containing appro-
ximately 200 particles or more. For the NI pressure
results, however, number dependencies, or conversely
size dependencies, turned out to be large and erratic,
particularly for the system of 2-2 electrolytes at M,=
6.0. In this case the transport diffusion results of the
NI convention are much lower than those given by
the Ewald method. The time-dependent dynamic prop-
erties also indicate the significant influence of long-
ranged Coulombic potentials as displayed in the mean-
square displacement curves and the velocity autocor-
relation functions. In addition, better accuracies for
the pressure were achieved from the MD-type time
average in Eq. (16) rather than from the MC-type con-
figurational average in Eq. (14) using the extrapolated
contact values of pair distribution functions. The MD
results reported here have a direct bearing on trans-
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port phenomena in variety of ionic systems. It would
be of great interest to extend to more realistic fluids
in order to verify a number of the conclusions obser-
ved in our MD simulations.

ACKNOWLEDGEMENT

This research was partly supported by Faculty Re-
search Fund of Keimyung University (1991). We ap-
preciate this financial support and also wish to thank
Mr. Woo-Chul Kim in implementing simulation data
during this work.

REFERENCES

1. Barker, J. A. and Henderson, D.: Rev. Mod. Phys,,
48, 587 (1976).

2. Hansen, ]J. P. and McDonald, I. R.: “Theory of Sim-
ple Liquids”, 2nd ed., Academic Press, New York
(1986).

3. Allen, M. P. and Tildesley, D. J.: “Computer Simu-
lation of Liquids”, Clarendon Press, Oxford (1987).

4. Valleau, J. P. and Whittington, S.G.: Chap. 4 in
“Statistical Mechanics A. Modern Theoretical Chem-
istry”, Berne, B.]. ed., Plenum, New York (1977).

5. Levesque, D., Weis, J.J. and Hansen, J. P.: Chap.
2 in “Topics in Current Physics Vol. 36. Applica-
tions of the Monte Carlo Method in Statistical Phys-
ics”, Binder, K. ed., Springer, Berlin (1984).

6. Brush, S. G, Sahlin, H. L. and Teller, E.: /. Chem.
Phys., 45, 2102 (1966).

7. Adams, D. J., Adams, E. M. and Hills, G.].: Mol.
Phys., 38, 387 (1979).

8. Ewald, P.P.:. Ann. Phys. Leipzig, 64, 253 (1921).

9. De Leeuw, S.W., Perram, J. W. and Smith, E.R.:
Proc. R. Soc. London A, 373, 27 (1980).

10. Adams, D.). and Dubey, G.S.: J Comput. Phys.,
72, 156 (1987).

11. Quthwaite, C. W.: Chap. 3 in “Specialist Periodical
Reports Vol. 2. Statistical Mechanics”, Singer, K.
ed., The Chemical Society, London (1975).

12. Heyes, D. M.: Chem. Phys., 69, 155 (1982).

13. Suh, S.-H., Mier-y-Teran, L., White, H. S. and Da-
vis, H. T.: Chem. Phys., 142, 203 (1990).

14. Sangster, M.]J. L. and Dixon, M.: Adv. Fhys, 25,
247 (1976).

15. Valleau, ]J.P. and Cohen, K.: /. Chem. Fhys, 72,
5935 (1980).

16. Valleau, J. P., Cohen, K. and Card, D. N.: . Chem.
Phys., 72, 5942 (1980).

17. Van Megen, W. and Snook, 1. K.: Mol Phys, 39,
1043 (1980).



18.

19.

20.
21

A Long-Ranged Electrostatic Interaction in Computer Simulations

Rogde, S. A. and Hafskjold, B.: Mol. Phys., 48, 1241
(1983).

Krogh-Moe, ], @stvold, T. and Fgrland, T.: Acta
Chem. Scand., 23, 2421 (1969).

Evjen, H. M.: Phys. Rev., 39, 675(1932).
Woodcock, L.V. and Singer, K.: Trans. Faraday
Soc., 67, 12 (1971).

22.

23.
24.
25.
26.

143

Rogde, S. A. and Hafskjold, B.: Acta Chem. Scand.
A, 35, 263 (1981).

Rasaiah, J.C.: J. Chem. Phys., 56, 3071 (1972).
Adams, D.J.. /. Chem. Phys., 78, 2585 (1983).
Adams, D.]J.. Chem. Phys. Lett, 62, 329 (1979).
Easteal, A. ], Woolf, L. A. and Jolly, D. L.: Physica,
127A, 344 (1984).

Korean J. Ch. E.(Vol. 9, No. 3)



